Estimate Variance

The variance is equal to,

\(\sigma_E^\mathrm{2}=E\left\{\left(\hat{M}-m\right)^\mathrm{2}\right\}=E\left\{{\hat{M}}^\mathrm{2}\right\}-m^\mathrm{2}\) (8)

calculation of de E\(\left\{{\hat{M}}^\mathrm{2}\right\}\)

\(E\left\{{\hat{M}}^\mathrm{2}\right\}=E\left\{\frac{\mathrm{1}}{T^\mathrm{2}}\int_{\mathrm{0}}^{T}\int_{\mathrm{0}}^{T}x\left(t\right)x\left(u\right)dtdu\right\}=\frac{\mathrm{1} }{T^\mathrm{2}}\int_{\mathrm{0}}^{T}\int_{\mathrm{0}}^{T}E\left\{x\left(t\right)x\left(u\right)\right\}dtdu\)

\(=\int_{\mathrm{0}}^{T}\int_{\mathrm{0}}^{T}{E\left\{x\left(t\right)x\left(u\right)\right\}dtdu=\frac{\mathrm{1} }{T^\mathrm{2}}}\int_{\mathrm{0}}^{T}\int_{\mathrm{0}}^{T}{R_xdtdu}\) (9)

By changing the variable:

\(\left[\begin{matrix}t\\u\\\end{matrix}\right]\rightarrow τ=t-uv=u\)

Figure 2: Domain of integration of the moment of order 2.

The transformation of the integration domain D1 into the domain D2 (Figure 2) results in the following moment of order:

\(E\left\{{\hat{M}}^2\right\}=\frac{1}{T^2}\left[\int_{\mathrm{-T}}^{0}{\left(T+\tau\right)R_x\left(\tau\right)d\tau+\int_{0}^{T}{\left(T+\tau\right)R_x\left(\tau\right)d\tau}}\right]\)

\(=\frac{1}{T}\int_{-T}^{+T}\left(1-\frac{\left|\tau\right|}{T}\right)R_x\left(\tau\right)d\tau\) (10)

Which gives a variance equal to:

\(\sigma_E^2=\frac{1}{T}\int_{-T}^{+T}\left(1-\frac{\left|\tau\right|}{T}\right)\left[R_x\left(\tau\right)-m^2\right]d\tau\) (11)

So, the estimation variance is the average of the center-adjusted autocorrelation function \(R_{xc}\left(\tau\right)=R_x\left(\tau\right)-m^2\) weighted by the triangle function over the time range \(\left[-T,\ +T\right]\).

As;

\(\sigma_E^2\le\frac{1}{T}\int_{-\infty}^{+\infty}{R_x\left(\tau\right)d\tau}\le\frac{1}{T}\int_{-\infty}^{+\infty}{R_{xc}\left(\tau\right)d\tau}=\frac{\gamma_{xc\ (0)}}{T}\) (12)

When the support T of the realization increases, the variance tends to zero. \hat{M} is therefore a consistent estimator.