

2024-2025

Serie Nº 8

Exercice Nº1 :

Consider a sample of size n, X1, X2, ..., Xn, with mean and variance σ^2 .

- 1- Provide the method of moments estimator for μ^2 .
- 2- Calculate its bias.
- 3- Determining k such that $\overline{X}^2 kS_{cor}^2$ is an unbiased estimator of μ^2 .

Exercice 02:

Let $X_1, X_2, ..., X_n$ be a sample with mean μ . We are interested in two estimators of μ .

$$T_1 = \frac{X_1 + X_2}{2}$$
 and $T_2 = \frac{1}{n} \sum_{i=1}^n X_i - \frac{X_1 + X_2}{2}$

Determine which of these two estimators is better in terms of mean squared error.

Exercice 03:

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution whose exact form is unknown, but we know that the probability density function is of the form $f(x)=\theta x^{\theta-1}$ for 0 < x < 1, where θ is an unknown parameter.

- 1. Give the method of moments estimator for θ .
- 2. Calculate the bias of this estimator.
- 3. Calculate the variance of this estimator.
- 4. Propose an estimator based on the method of moments.
- 5. Propose an estimator based on the maximum likelihood method.