

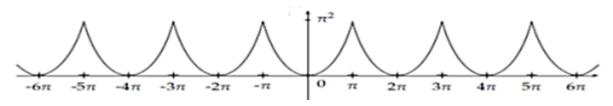
Serie Nº. 2

(Fourier series & Fourier Transform)

Exercice 01 :

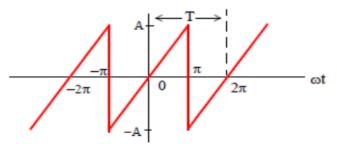
Let s(t) be a signal with period 2π on \mathbb{R} such that $s(t) = t^2$ si $|t| \le \pi$.

- 1. Determine the Fourier series of s(t) in trigonometric form.
- 2. Plot the one-sided amplitude and phase spectrum up to order 4 of s(t).



Exercice 2 :

1. Determine the Fourier series associated with the periodic signal (T = 2π) defined by the following figure:



2. Determine the Fourier series of this signal in harmonic form.

Exercice 03 : (additional)

Determine the parameters $\{A_k, \varphi_k\}$ of the cosine representation of the Fourier series of the following signal:

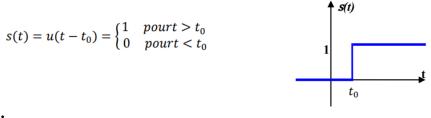
$$x(t) = 4 + 1.8 \cos\left(2.\pi f_0 t + \frac{\pi}{3}\right) + 0.8 \sin\left(6.\pi f_0 t\right); \quad f_0 = 1kHz$$
$$\sin\left(x\right) = \cos\left(x - \frac{\pi}{2}\right)$$

Fourier Transform

Exercice 01:

Search for the amplitude and phase spectra of the unit step signal s(t)s(t) in the following figure:

This signal is defined by :

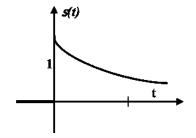


Exercice 2 :

We consider the signal s(t)s(t) shown in the following figure: this signal is defined by

$$s(t) = \begin{cases} 0 \quad pourt < 0\\ e^{-at}pourt \ge 0 \quad avec \ a > 0 \end{cases}$$

-Calculate the total energy of this signal from its time-domain expression and verify Parseval's equality by calculating the same energy from its Fourier transform expression.



Exercice 3 : (additional)

Calculate the Fourier transform $F(\omega)F(\omega)$ of this signal

