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Example 5. Beam with an

. ) the deflection
that the angles are positive as shown in the figure. (b) Calculate (0 pan

J. at the free end C. (c) Calculate the maximum deﬂegtion (5,.‘.-8': :hebmd‘
(a} To find the various angles of rotation and deflections. wedrjlagra m

ing-moment diagram. From static equilibrium, we construct the e the O
below the sketch of the deflection curve. The bending momcn[:
centrated load is 80 kNm and at support B is —40 kN-m. Betweinl loc: ed 27
the bending moment varies linearly and becomes zero at 2 p‘:l es SIgN l“"‘:
from B. At the point of zero moment, the bending mome“'AChzficro curstil
the curvature also changes sign. Consequently, there is @ POI;Lclion curvé 0["‘;
called an inflection point, or point of contraflexure, in the d¢ ave Ul ward: 1©
beam. To the left of the inflection point, the beam bends €OnC
right, it bends concave downward.

Ueriecuons or seams

Hence, the angle 0, (times EI) is
EI(A4)
10m

The angle of rotation 6, is equal to the
of the M/EI diagram between B and C, in
theorem. Hence,

EI9, =

=90.67 kN-m?

angle 0, at sy

Ppo
accord with Port B py

S
the firsy "‘Dm::: :u
Uy
EIf, = EIO, + A,
=90.67kN'm? — 53.33kN-m? = 3733 kN-m2 i

Now we can determine the actual angles of rotation by subsgir
200 GPaand I = 1.28 x 10° mm* into the preceding equations Thsmut"‘g Es
equals 256.0 MN-m?; therefore, * " 1€ producy gy

189.3 kN-m?

* T S60MNmE - 20 X 107" rad
90.67 kN-m?

* 73560 MNmz ~ o4 X 107 rad
3733 kN-m?

-=—_— = -6
0, 2560 MN-m? 146 x 107° rad

Thus, the required angles of rotation have been calculated.
(b) From Fig. 7-13, we see that the deflection d. equals the distance C'C"

minus the distance C'C. The first of these distances is obtained by multiplying
0, by the distance from B to C:

EIC'C") = EI0,(4 m) = (90.67 kN'm?)(4 m)
= 362.7kN-m?*

The distance C'C is the offset of point C from the tangent at B, which is equél
to the negative of the first moment of the area of the M/EI diagram between B

and C, with respect to C:
EIC'C)= — A, G) (4m) = (53.33kN'm?)(3 m)
= 160.0 kN-m?
Therefore, the deflection (times El) is
EIé. = EI(C'C") — EI(C'C) s
=3627kN-m? — 160.0 kN-m? = 2027 kN'm
Substituting the value of EI, we get

_ 2027kN-m?

= - =0.792mm
¢ 2560 MN'm?

This deflection is upward, as shown in the figure. in span AB 2! ’.f:og
(¢) The maximum downward deflection &g, 0CCUIS ID and BT ;xhl‘
E to be located. Let us assume that this point is between = i

m
n by 385U et
the calculations will so indicate, and then we can begl nhasg‘: hc:riuxrl"‘l e
E is between 4 and D.) At point E, the deflection curve ha

we

20 lgaq

. calculating areas and _ﬁrst moments of tt_xe K/Er::i‘fl;
j enience n bending-moment dlag_ram as shown in the
 Fo! m“g" redra¥ .lhe oment diagram is equivalent to the one just abovg
figure- T.h dn‘]) calculating the bending moment at a fevzsele;te !
sily b€ v?nﬁe] iny(his sketch represents the moment from A to s
l; 7 triang’e Jower triangle represents the moment of the concen-
, and the 10 ding-moment diagram construc;ed in this form
puob [t Zie:grlai drawn by “parts,” for the'obvious reason
ed 10 35 omC:‘oml bending moment at any cross secpon. the dmg;m
. cad of giving the We can use either form of the bendmg-mo_menf ia-
oment i par‘s].«,nions by the moment-area theorems, but in thls;x-
i:lm when m_;,kn;gucsilf“]‘c diagram drawn by parts. Of course, the total bending
tis easier

‘e designing the beam.
amp ent iS nce_dcq wy‘;e:qauer, let us calculate the areas A, Aj, and A; of the
o P e moment diagram:

parts of the bending-

three R
_ L 10 m)(200 kN-m) = 1000 kN'm
A=3
. 2
4, :%[e m)(~ 240 KN-m) = ~T20kN'm
4= (8 m)(— 20 KNom) = —5333 kN-m?
3

The corresponding areas of the M/EI diagram are obtained by dividing these

areasgifl‘;e are ready to calculate the angle of rotation 0, (Fig. 7-13). This
angle equals the distance BB’ divided by the span lenglh of 10m. The[fl;::s‘;j:
BB equals the first moment of the area of the M/EI flxagram be'l'ween o 5,
taken about B. Therefore, the quantity EI times the distance BB’ is calculated a

follows: 6m
EIBB) = 4, (me) + A, (T)

6m
(1000 kN~m’)(10—3m—> — (720 kN-m?) (—3-)

= 1893 kN-m?*

i

The Quantity E16, can now be calculated:

E10, = E'BB) _ (593 ke m?
10 m

Note .
e 0 for convenience in the calculations, we keep EI as a common factor.

T, Wi N1 .
o we will Substitute numerical values for E and I and determine the value
I radiapg,

N 1 .
dlmnangle of rotation 0, is determined in a similar manner. We first find
A4' from the second moment-area theorem:

Elaay < %)(10 m) + A,[:z m+ %(6 m)}
= (1000 kN-m?) (mT'"> — (720 kKN-m?)(8 m)
=906.7 KN-m®

i | the angle
diagram between A and E must equa
¢ sz/.ﬁ:la:lci from A to E by x,, we can write the follow-

ol
the a2 0o N
. " penoting part of Fig. 7-13):

o
10!

1
L — amy@o kN, — 4m)
£10, = %(x‘)(lo KN)(er) = 3 (0

10 kN) + x,(160 kKN-m) — 320 kN-m?
s of meters. Substituting EI0, = 1893 kN-m? into this
o ;::‘ft;llowing quadratic equation for x,:
x2—16x, +5093 =0

=xil

ich X1 b 1
on, e £2¢

dratic formula, we get x, = 4.385 m (the other root has no
ua

ing by the d his problem). The position of point E between D and B is

. aning in t!
pow determined. deflection 8., is numerically equal to the offset of PomthA

The ma.“m::: tangent at E. Therefore, we can calculate 8, by taking t t:_
from the hor[ﬂ?:h'e area between A and E with respect to A (see the last part ol
first moment ©

Fig. 713
1 2x,
Eldpas =§(x,)(20 KN)Ox {5~

1 2 4m)
— ~(x, — 4 )0 kN)(x, — 4 m) 4m+§(x,— m)
2

Substituting x, = 4.385 m into the above expressions, we get
Eld,,, = 5622 kN'm* — 12.63 kN-m® = 549.6 kN-m?®
Finally, we calculate §,,,, in numerical terms:
_ 549.6 kN-m®
™ 7256.0 MN-m?

Thus, the maximum downward deflection of the beam has been determined. )
In this example, we relied on the geometry of the deflection curve to obtain

the desired relationships between angles of rotation and defiections. Such a

:::?“’“'Seme‘procedure often is more efficient than using the proper sign con-
Ons associated with the moment-area theorems.

—

=215 mm

i.5 WNoment-Area Meinou

i Wewoa of Superposiion <
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. METHoD oF SUPERPOSITION
7“°J aree d;gﬂem':al €quations of the deflection curve of a beam (Egs.
‘aﬂection v car Q‘ﬁel’ential equations; that is, all terms containing the
> S‘OIutio::do;ts derivatives are raised to the first power only. There-
Sietimpogey Th‘ ¢ €qua‘ions for various loading conditions may be
loags a'c“n us, the deuiection of the beam caused by scve}'al dif-
-~ long causedg SI"mlla“COUSly can be found by superimposing the
1 by the loads acting separately. For instance, if v, rep-




flections of Beams

)
s

im with two

Lyl

with a

resents the deflection due to a load g, and i
due to a load g, the total deﬂect(i)(;n p(iolfjll:}c;gplr:scnts the deg,
simultaneously is v; + v,. Y dyang oy
To %l]ustrate this idea, consider the cantilever p, * cling
7-14. This beam supports a uniform load of intensit. cam Showp in g
span and a concentrated load P acting at the end :\y 4 over pap q}ls
to find the deflection d, at the free end. When 1he‘1053ume that ye w(
d_eﬁection at Bis PL*/3EI, as shown in Example | oz}d P acts alone ?m
FIOH (Eq. 7-39). Also, due to the uniform load actin althe Precedipg. b
is ga*(4L — a)/24EI, as obtained in Example 2 ofglheone, lheﬁ deflecyy,,
(Eq. 7-41). Hence, the deflection 8, due to the combinmecedmg Se'-‘lio:

ed loading i
_PL®  qa*dL-aq)
3EI 24EI

d,
(149
The deflection and angle of rotatio i

found by this procedufe. " & any point of the beam

The method of superposition is most useful whe adi

on the beam can be subdivided into loading con‘:ilillzgxeliotdhd;:‘ L
dleﬂections that are already known, as illustrated in the examprl()du“
given. For convenient use in cases of this kind, tables of beam det;e:tg:n
are given in Appendix G. Using these tables and the method of supel:f
position, we can find deflections and angles of rotation for many different
l{)admg conditions for beams. Some additional examples of this type are
given at the end of this section.

) Superposition may also be used for distributed loadings by con-
sidering an element of the distributed load as if it were a concentrated
load and then integrating throughout the region of the load. This pro-
cedure can be easily understood from the example shown in Fig. 7-15
The load on the simple beam AB is triangularly distributed over the
left-hand half of the beam, and we will assume that the deflection 8 at
the midpoint is to be found. An element g dx of the distributed load ca
be visualized as a concentrated load. The deflection at the midpoint
przduced by a concentrated load P acting at distance X from the lef
end is

can be

Px 5 2
WREI (3L? — 4x%)

Lo . . jtuting
which is obtained from Case 5 of Table G-2 in Appendix G. Subslla‘i';““‘,"‘)I
gdx for P in this expression, and noting that ¢ = 2qox/L, WE obt
the deflection

dx

5= Lz X L2— 4x?

.[o 48E1 & )
4 7-50'
__do (U232 232 dx = gol l
aLEr), CLT AN = 24081
i 7 Deflections of Beams
Example 2

di,
e |

ple 2. Cantilever
rm load over one-

A cantilever beam AB carri i
i Ties a uniform load of j, i
half of ts length, as shown in Fig, 7-17. Fing orf oo 4 overy
rotation 6, at the free end. he deflection i
We begin by considering an element qdx of the |
0ad loc,

0 o e g ot 11038 rodices 3 i gt
nd 5
ds = ARIEICL — 5 dx)(’: L % -
as found from Case 5 of Table G-1. Hence, by imegraui; we
get

o= G ], 0L = 905 = e o
)
0,= 267 e xtdx = Zg‘lg; 015y

These same results can be obtained more sim

3 of Table G-1 and substituting a = b = /2. Ply by using the formulas in Case

g
L.

Pl

qa
M, = lig
B) 2
\N

B 'S
&L
C

3. Simple beam

C

Example 3

A simple beam wit - L
ﬂeclioTn o, at the e:da:f ‘:}:r:::ﬁ::nl;aded as shown in Fig. 7-18a. Find thedc
by the ]:Zg:t:“?r:hﬂ point C'is made up of two parts: (1) a deflection 6, caused
the bending of o : © beanq axis at support B and (2) a deflection 6, caused by
the deﬂccliin “f’:r bfc acting as a cantilever beam. To obtain the first part of
as a simple béa °’ erve that portion AB of the beam is in the same condition
to ga?/2) and a m carrying a uniform load and subjected to a couple My (equel
in e /7 and a vertical load (equal to ga) acting at the right-hand end, as shost
& . The angle 0, at end B (see Cases 1 and 7 of Table G-2)is:

qL?

0,=— . ML _ qL(4a* — L%
24E1 1El

3EI ~ 24El

in which clockwise rotation is positive. The deflection &, of point &,
rotation at B, is equal to af),, or

due to the

5 = qaL(d4a® — L?)
24E1
This deflection is positive when downward.
The bending of the overhang itself produces a downw

at C. This deflection is equal to the deflection of a cantilever
(see Case | of Table G-1):

ard deflection D‘:
beam © teng®

~

Sy ang g, a.l.:"
M

7.6 Method of Superposition 2/3

osing elements of the distributed

ure of superimp
tion 0, at the left end of the beam.

angle of rota
a concentrated load P (see Case 5

we c:.:ion for this angle due to
expre> L
) is
e PabiL+b)
6LEI

sion, WE must replace P with 2qoxdx/L, a with x, and b
expres: 3

s 5T thus;

. - X
with L lqoL3

4
= -51
2880E! -39

290X X (g QL - x
0=, 30 ™" WL~

0

Justration of this technique_'\s given in Example 2. o
of the preceding illustrations, we have used the principle of
obtain defiections of beams. This concept is widely used
- echanics and 1S valid whenever the quantity to b'e'determined _is a
in me - of the applied loads. Under such conditions, the desired
linear function Of | PP >
quantity may be found due to each lo'ad acting separately, and then the
results may be supcrimposw to obtain the total value due to al]. lo'ads
acting simultaneously. In the case of deflections of beams, the principle
of superposition is valid if Hooke’s law holds for the material and if the
deflections and rotations of the beam are small. The requirement of small
rotations ensures that the differential equation of the deflection curve
is linear, and the requirement of small deflections ensures that the lines
of action of the loads and reactions are not changed significantly from
their original positions.

The following examples further illustrate the use of the principle of
superposition for calculating deflections of beams.

Another 1
In each

supe[posiﬁnll to

— -
- -
Example 1
A simpl| L
Ple beam AB is acted upon by couples M, and 2M, at the ends (see Fig. M, 2M
’-

7-16). Obtaj .
n anl:;am expressions for the angles of rotation 0, and 0, at the ends of the
U “g deflection § at the middle.
8 Case 7 of Table G-2, we obtain by superposition S 7

K < BN
PL/z———PL/Z/——.

0 ML @MgL _2M,L
“"3EI T 6EI  3EI
ML Fig. 7-16 Example 1. Simple bean
0y =22 ML = %E with couples acting at the ends
6EI 3E] 6El
5o Mol?  (@MGL? _3M,L?

" 16EI 16EI

S, the reg 16E]
Auired quantities haly. been found.

- —

7.7 Nonprismatic Beams

int C assumed to be positive when downward, is
po '

geflectio” of

st (7-54)

qa 3 2 3
T 4a’L — L)
w that, when a is less than LJ13 = 1)/6,0r 0434 L,
s d point C deflects upwar(}!{‘ . .

on e i urve for the beam in this example is shown in
s of the deﬂi?:‘i‘sclarge enough (@ > 0.434L) to produce a down-
" wd Zmall enough (a < L) to ensure that the reaction at A
aenconditions the beam has a positive bending moment rrorp
D hence, the Jeflection curve is convex down.ward in this
Frr;m D to C, the bending moment is negative, and th_e
. 'convex upward. Point D, at which the‘ curva'ture qf the axis
lj, (because the bending moment is zero), is a point of inflection.
Ze; the deflection curve changes sign at this point.

we can sho

. gesull .
is negative an

ofthe beam 15
The curvalure 0l

e
gxample 4
Determine the deflection
7-19. Note that the beam is composed o
ported at 4, and (2) a cantilever beam B
together by a pin connection at B.
Considering beam AB as a free body,
Pf3 and 2P/3 at ends A and B, respectively.
dition of a cantilever beam subjected to a uni
concentrated load at the end equal to 2P/3. The deflection of the en
cantilever, which is the same as the deflection of the hinge, is

_gb* . 2Ph?
T BEI " 9EI

asfound from Cases 1 and 4 of Table G-1.

et

at the hinge B for the compound beam shown in Fig.
f two parts: (1) a beam AB, simply sup-
C, fixed at C. The two beams are linked

we see that it has vertical reactions
Therefore, beam BC is in the con-
form load of intensity ¢ and a
d of this

Fig. 7-19 Example 4. Co
beam with a hinge

[N

t——.

1.7
NONPRISMATIC BEAMS

dcﬁ;{ki\zn;ng;h"ds presented in the preceding sections for calculating
b"_““hrougho[:,rﬁ:g"c beams (that is, beams with constant cross se¢-
Phismatic begpmg g, cir lengths) can also be used to find deflections of non-
23S in various uch beams include those with different cross-sectional
Hpered beapg (S parts of the beam (see Fig. 7-20 for an example) and
®Cliong| dimenss?z Fig. 7-21). When a beam has abrupt changes in cross-

¢ changes DCC“S,_ there are local stress concentrations at the points

ton the calcu|ur~’ g“‘{’ever, these local stresses have no noticeable

'Y deriveg pre:‘.t'o -« deflections. For a tapered beam, the bending
« Vided thgy the alously for a prismatic beam gives satisfactory results
. ngle of taper is small.

u



