Title:

Probability-Statistics

	Course	GW	
VHS	1h30	1h30	

Mr Medjati . R Email : medjati@yahoo.fr

Table of contents:

Partie 1. Descriptive statistics.

<u>Chapter 1</u> : Statistical series of 1 variable.

<u>Chapter 2</u> : Statistical series of 2 variables.

Partie 2. Probabilities.

<u>Chapter 1</u> : Introduction to Probability Calculus.

Part 1. Descriptive statistics.

<u>Chapter 1</u> : Statistical series of 1 variable.

- 1.1- Introduction: Generalities, definitions, Types of variables.
- 1.2- Statistical series and their representations:
 1.2.1- Discrete quantitative case.
 1.2.2- Continuous quantitative case.
 1.2.3- Qualitative case.
- 1.3- Measures of the statistical series
 1.3.1- Measures of position : Mode, arithmetic mean and median
 1.3.2- Measures of Dispersion : Variance and standard deviation.

Partie 1. Descriptive statistics.

<u>Chapter 2</u> : Statistical series of 2 variables.

2.1- Introduction.

2.2- Distribution and characteristics :
2.2.1- Marginal distributions.
2.2.2- Marginal characteristics: Means and marginal variances.
2.2.3- Conditional distribution.
2.2.4- Conditional characteristics.

2.3- Covariance of 02 variables
1.3.1- Definition and properties.
1.3.2- Correlation coefficient

2.4- Adjustments : Type y = ax+b, Type $y = Ba^x$

Part 2. Probabilities. <u>Chapter 3 : Introduction to Probability Calculus.</u>

- 3.1- Reminders about combinatorial analysis: Permutation, arrangement, combination.
- 3.2- Basic concepts
- 3.3- Conditional probability
 3.3.1- Theorem of total probability.
 3.3.2- Bayes' theorem.
 3.3.3- Independent events.

<u>Chapter 1</u> : Statistical series of 1 variable.

- 1.1- Introduction :
- 1.1.1- The statistics:

For a group of individuals or objects statistics is the study of :

- 1. The data collection.
- 2. Their analysis, their treatment and the interpretation of the results.
- 3. Their presentation to make the data understandable to everyone.

1.1.2- A statistical population :

A statistical population is the set on which observations are carried out.

Examples :

- 1. Set of people interviewed for a survey.
- 2. Set of countries for which geographic or economic data are available, ...

1.1.3- Individual (or statistical units):

The individuals are the elements of the statistical population studied. For each individual, we have one or more observations.

Examples :

- 1. Each person interviewed for an investigation.
- 2. Each country for which we study socio-economic data, ...
- 3. Every day of the year for which weather data is available, ...

1.1.4- Statistical variable :

This is what is observed or measured on individuals in a statistical population.

It can be a qualitative or quantitative variable.

Examples :

- 1. Size, weight, salary, gender, profession of a given group of individuals.
- 2. Maximum and minimum temperature, rainfall and sunshine, measured at a given location every day.

A. <u>Qualitative variable</u>:

A statistical variable is qualitative if its values, or modalities, are expressed literally or through coding. (i.e. an observation which is not measurable).

Examples :

- 1. Gender, family situation,...
- 2. Weather conditions observed at a given location each day (rainy, snowy, sunny, windy, etc.)

B. <u>Quantitative variable</u> :

A statistical variable is quantitative if its values are numbers on which arithmetic operations such as sum, average, etc. have meaning.

<u>**Remark</u>:** Quantitative variables can be discrete or continuous.</u>

B.1 <u>Discrete quantitative variable</u>:

It is a quantitative variable that can take a finite number by nature (or countable) of values by nature.

Exemples :

- 1. Number of children per family.
- 2. Number of rooms in a flat.

B.2 Continuous quantitative variable:

It is a quantitative variable that can take on an infinite number of values by nature, generally an entire real interval.

Examples :

Height, weight, wages, cultivated areas, temperature.

<u>**Remark</u>**: In this case we use intervals (class) $[a_i, b_i[$ instead of x_i .</u>

1.1.5- Modality:

The modalities of a variable are the different results of the observation (numbers or properties).

Examples :

1. <u>Qualitative case</u>:

The modalities of the variable X = "family situation" are : $M = \{$ single, married, widowed, divorced $\}$.

2. Discrete quantitative case:

The modalities of the variable X = "Score on an exam" are : $M = \{7; 9; 14; 16, 5\}$.

3. Continuous quantitative case:

The modalities of the variable X = " Size" are the values belonging to the intervals (class) [150, 165[, [165, 180[, etc...]

<u>**Remark</u>** : There are 2 types of qualitative statistical variables;</u>

1^{er} - Nominal qualitative variable:

The variable is called qualitative nominal when the modalities cannot be ordered (cannot be classified).

Example 1

The variable X = «family situation» with the modalities noted : C, M, V, D.

Example 2 :

The variable X = "gender" with the modalities noted : M, F.

2^{eme} - Ordinal qualitative variable :

The variable is called ordinal qualitative when the modalities can be ordered. If, $M = \{x_1, x_2, \dots, x_r\}$ designates the set of modalities, these values are ordered, that is to say : $x_1 \prec x_2 \prec \cdots \prec x_r$. The notation $x_1 \prec x_2$ is read as x_1 comes before x_2 .

Example 1

A satisfaction questionnaire asks consumers to evaluate a service by checking one of the following six categories :

- (a) poor, (b) average, (c) fairly good, (d) very good,(e) excellent.
- Example 2 :
- La variable X = « Educational level ».

1.1.6 Frequency and Relative frequency of a modality :

The frequency n_i of a modality (or of class) is the number of times where the modality (resp class) $n^{\circ}i$ was observed.

□ The total frequency *N* is the total number of observed individuals. $N = n_1 + n_2 + \dots + n_r = \sum_{i=1}^r n_i$

The relative frequency f_i of a modality (or of class) is the frequency n_i divided by the total frequency N.

$$f_i = \frac{n_i}{N} = \frac{n_i}{\sum_{i=1}^r n_i}$$

<u>**Remark**</u>: The relative frequencies can be expressed as

percentages, and we have the following result :

$$\sum_{i=1}^{r} f_{i} = 1 \operatorname{car} \sum_{i=1}^{r} f_{i} = \sum_{i=1}^{r} \frac{n_{i}}{N} = \frac{1}{N} \sum_{1}^{r} n_{i} = \frac{N}{N} = 1$$

Exemple : Out of 200 families, 50 have 2 children, we would say that the relative frequency f_i corresponding to the value $x_i = 2$ of the variable "number of children", is :

$$f_i = \frac{n_i}{N} = \frac{50}{200} = \frac{1}{4} = 0,25$$
 soit 25%

1.1.7 Presentation in a statistical table:

A. <u>Nominal qualitative case</u> : For a nominal qualitative statistical variable, if the set $M = \{M_1, M_2, ..., M_r\}$ designates all the modalities, then the statistical table associated with this variable is :

Modalities (numbered) M _i	Frequencies <i>n</i> _i	Relative fréquencies f_i
<i>M</i> ₁ (1)	n_1	f_{I}
M ₂ (2)	n_2	f_2
		- ·
-		-
<i>M_r</i> (<i>r</i>)	n _r	f_r
Total	Ň	1

<u>Example 1</u>:

We are interested in the values of the variable X = «family situation» taken from 20 people whose coding is ;

c : Single, m : married, v = widowed, d = widowed, divorced. So

the variable domain X is $M = \{c, m, v, d\}$.

Consider the following results:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
m	m	d	С	С	m	С	С	С	m	С	m	V	m	V	d	С	С	С	m

And we obtain the following table:

M _i	<i>n</i> _i	f_i
С	9	0,45
m	7	0,35
V	2	0,10
d	2	0,10
Total	20	1,00

<u>Remark 1</u>: Before tackling other cases we define the following ;

1- Increasing relative cumulative frequencies F_i (f_{ic}) : is

$$F_{1} = f_{1}, F_{2} = f_{1} + f_{2} \quad et$$

$$F_{i} = f_{ic} = f_{1} + f_{2} + \dots + f_{i} = \sum_{p=1}^{i} f_{p}$$

2- Decreasing relative cumulative frequencies F'_i (f_{id}) : C'est

$$F_{r}' = f_{r}, F_{r-1}' = f_{r} + f_{r-1}$$
 et
 $F_{i}' = f_{id} = f_{r} + f_{r-1} + \dots + f_{i} = \sum_{p=i}^{r} f_{p}$

<u>**Remark 2**</u>: In the same way we define the increasing cumulative frequencies N_i (n_{ic}) and the decreasing cumulative frequencies N'_i (n_{id}).

$$N_{i} = n_{ic} = \sum_{p=1}^{i} n_{p}$$
 et $N_{i}' = n_{id} = \sum_{p=i}^{r} n_{p}$

B. Ordinal qualitative case :

If $M = \{x_1, x_2, ..., x_r\}$ designates the set of modalities, these values are ordered, that is to say : $x_1 < x_2 < \cdots < x_r$. With $x_1 < x_2$ is read as x_1 comes before x_2 . then the statistical table associated with this variable is :

x _i	Frequencies <i>n</i> _i	Increasing cumulative frequencies N_i	relative frequencies f_i	Increasing relative cumulative frequencies ${m F}_i$
<i>x</i> ₁	<i>n</i> ₁	N_{I}	f_{I}	F_1
x_2	<i>n</i> ₂	N_2	f_2	F_2
		-		-
•				
x _r	n _r	N _r	f_r	F _r
Total	N		1	

Example :

20 shirts are classed by size :

$$x_1 = S, x_2 = M, x_3 = L, x_4 = XL, et x_5 = XXL.$$

The table associated is :

x _i	Frequencies n_i	Increasing cumulative frequencies N_i	relative frequencies f_i	Increasing relative cumulative frequencies F_i
x_1	4	4	0,20	0,20
x_2	2	6	0,10	0,30
<i>x</i> ₃	5	11	0,25	0,55
<i>x</i> ₄	8	19	0,40	0,95
<i>x</i> ₅	1	20	0,05	1,00
Total	20		1,00	

Remark 3 :

The discrete quantitative case is done in the same way as the case, and we obtain a statistical table similar to that of the ordinal qualitative case.

And in the **continued quantitative case** we will have:

Classes [b _{i-1} , b _i [Centers c_i	n _i	N_i	f_i	F _i
$[b_0, b_1]$	<i>c</i> ₁	<i>n</i> ₁	N ₁	f_{I}	F_{1}
$[b_1, b_2]$	<i>c</i> ₂	n_2	N_2	f_2	F_2
•	-		-	-	
	-	•	-	-	
•	-	•		•	•
$[b_{r-1}, b_r]$	C _r	n _r	N _r	f_r	F _r
Total		N		1	

<u>Remarks</u>:

1. The <u>center</u> of a class is :

$$c_i = \frac{b_{i-1} + b_i}{2}, \quad c_i \approx x_i$$

2. The <u>amplitude</u> of a class is : $a_i = b_i - b_{i-1}$

Example :

The distribution of 100 households according to their monthly consumption expenses expressed *in thousands of dinars* is as follows :

Expense Classes	Number of households
[20-40[15
[40-60[20
[60-100[20
[100-200[45

And The table associated is :

Classes	Centers c _i	n _i	N_i	f_i	F _i
[20- 40[30	15	15	0,15	0,15
[40-60[50	20	35	0,20	0,35
[60-100[80	20	55	0,20	0,55
[100-200[150	45	100	0,45	1,00
Total		100		1,00	

Calculation example :

1- Decreasing relative cumulative frequencies F', and

2- Decreasing cumulative frequencies N'_i

$$F'_{r} = f_{r}, F'_{r-1} = f_{r} + f_{r-1}$$
; $F'_{i} = f_{id} = f_{r} + f_{r-1} + \dots + f_{i} = \sum_{p=i}^{r} f_{p}$ et $N'_{i} = n_{id} = \sum_{p=i}^{r} n_{p}$

Classes	Centers c _i	n _i	N'_i	f_i	F'_i
[20- 40[30	15	100	0,15	1,00
[40-60[50	20	85	0,20	0,85
[60-100[80	20	65	0,20	0,65
[100-200[150	45	45	0,45	0,45
Total		100		1,00	

<u>**Remark**</u>: All the couples;

1- $\{(x_i, n_i)\}$ or $\{(x_i, f_i)\}$ if the variable is discrete.

2- {($[b_{i-1}, b_i[, n_i)$ }), or {($[b_{i-1}, b_i[, f_i)$ }) if the variable is continuous. Is called <u>the statistical series of the variable</u>. 1.2- Diagrammatic and Graphic presentation of data :

1.2.1- Graphics representations- Qualitative case. A- Bars Diagram :

It is a Cartesian benchmark such that :

for each modality **M**_i we associate a rectangle with **constant <u>base</u>** whose height is the frequency n_i (The relative frequency f_i).

.t_i f_3 f_1 f_2 .f₄ M1 M2 **M**3 M4 Remark :

For the axis of frequencies (relative frequencies), we choose an arithmetic scale.

B- <u>Pie chart</u> :

It is a graph where the modalities are represented by portions of Equipe de probabilités disk proportional to their frequencies, or to their relative frequencies.

In effect; for a modality \mathbf{M}_i , of frequency n_i , the angle at the center α_i corresponding is given (in degree) by:

$$\alpha_i = f_i \times 360^\circ = \frac{n_i}{N} \times 360^\circ$$

<u>RemarK :</u>

Bar and pie chart can be used in the quantitative case.

Example :

According to a study carried at the Oran business school the distribution of 50 students according to the branch of the baccalaureate is reported in the following table:

the branch of bac <i>M_i</i>	n _i	f_i	Angles a_i
Management	25	0,50	180°
Mathematics	15	0,30	108°
Exp sciences and other	10	0,20	72 °
Total	50	1,00	360 °

And the associated bar chart is :

 M_{3}

 M_{2}

Branch of bac M_i	n _i	f_i		
Management	25	0,50	$n_1 = 25$	
Mathématics	15	0,30] n -15	
Exp sciences and other	10	0,20	$\begin{bmatrix} n_2 - 13 \\ n_3 = 10 \end{bmatrix}$	
Total	50	1,00		
			L	$\overline{M_1}$

1.2.2- Discrete quantitative case :

- <u>Lines Diagram</u> :

It is a Cartesian benchmark such that the values are placed on the abscissa, the frequencies (or relative frequencies) on the ordinate, and at every point (x_i , 0) we associate a vertical segment whose length is the frequency n_i (relative frequency f_i).

Example 1

<mark>28</mark>)

Example 2 :

1.2.3 - Continuous quantitative case:

We represent a continuous statistical series by <u>a histogram</u> Equipe de probability of the probability of th

<u>Definition</u>:

This is a figure obtained on a Cartesian coordinate system by representing for each class [b_{i-1} , b_i [a rectangle of area $\underline{S}_{\underline{i}}$ proportional to the frequency n_i or the relative frequency f_i . The rectangles of the histogram <u>are neighboring</u>.

Principle of histogram construction: there are two (02) cases 1st case:

If the classes are of the same amplitude a_i (ie $a_i = a_j$), we place the frequencies n_i on the ordinate (or relative frequencies f_i).

Example :

[b _{<i>i</i>-1} , b _{<i>i</i>} [n _i	a_i	f_i
[140,150[2	10	0,08
[150, 160]	7	10	0,28
[160,170]	8	10	0,32
[170, 180[5	10	0,20
[180, 190[3	10	0,12

2nd case :

If the amplitudes a_i are different (ie $a_i \neq a_j$), we define;

 $\Box \quad \underline{\text{The density of a class}}_{i} \text{ by } d_{i} = \frac{n_{i}}{a_{i}} \text{ and we put;}$ $h_{i} = \frac{n_{i}}{a} \times a^{*} = d_{i} \times a^{*} = n_{i}^{c}$

- With a* is called <u>the reference amplitude</u>. It is chosen arbitrarily so as to facilitate graphical representation (values on the ordinates axis).
- $\Box h_i$ is in this case called <u>corrected frequency</u> which we note · n_i^c So the rectangles S_i will be as follows :

$$n_{i}^{c}ouf_{i}^{c} \wedge h_{i} \wedge h_{i} = n_{i}^{c}(ou f_{i}^{c})$$

Example :

The distribution of 100 individuals by age classes is given by the next table ;

Classes	n,	Amplitude	Density n:	corrected frequency		Rel- Freq - cor
[b _{<i>i</i>-1} , b _{<i>i</i>} [t	$a_i = b_i - b_{i-1}$	$d_i = \frac{i}{a_i}$	$n_i^c = d_i \times a^*$	f_i	f_i^{c}
[5 , 10[11	5	2,2	22	0,11	0,22
[10, 15[10	5	2	20	0,10	0,20
[15, 20[15	5	3	30	0,15	0,30
[20, 30[20	10	2	20	0,20	0,20
[30 , 40[18	10	1,8	18	0,18	0,18
[40 , 60[16	20	0,8	08	0,16	0,08
[60, 80[10	20	0,5	05	0,10	0,05
Total	100				1,00	

<u>Remark :</u>

In this example the reference amplitude $a^* = 10$.

$[b_{i-1}, b_i]$	n _i	$a_i = b_i - b_{i-1}$	d_{i}	n_i^c	f_i	f_i^{c}
[5,10[11	5	2,2	22	0,11	0,22
[10,15]	10	5	2	20	0,10	0,20
[15, 20[15	5	3	30	0,15	0,30
[20, 30[20	10	2	20	0,20	0,20
[30,40[18	10	1,8	18	0,18	0,18
[40 , 60[16	20	0,8	08	0,16	0,08
[60, 80[10	20	0,5	05	0,10	0,05
Total	100				1,00	

<mark>33</mark>)

1.3- Cumulative Distribution Function :

We call Cumulative Distribution Function of a quant statistical variable any application defined by :

$$F : \mathbb{R} \to [0, 1]$$
$$x \to F(x) = P(X \le x)$$

F(x) proportion of individuals whose value of the variable is strictly less than or equal to x, that's to say $X \le x$.

<u>1- Discrete statistical variable case :</u>

 $F(x) = relative frequency of (X \le x) = f_1 + f_2 + ... + f_p = F_p$ such as : $f_1, f_2, ..., f_p$ are the relative frequencies of the values of the variable $\le x$, Otherwise F(x) = 0. Therefore

$$F(x) = \begin{cases} 0 & si & x < x_1 \\ F_i & si & x_i \le x < x_{i+1} \\ 1 & si & x_r \le x \end{cases}$$

such as *r* designates the order of *the last value (modality)*.

Example :

The following table gives the number of student absences from analysis module.

number of absences x_i	n _i	f_i	F _i
0	5	0,25	0,25
1	8	0,40	0,65
2	4	0,20	0,85
3	3	0,15	1,00
Total	20	1,00	

$$F(x) = \begin{cases} 0 & si & x < 0 \\ 0,25 & si & 0 \le x < 1 \\ 0,65 & si & 1 \le x < 2 \\ 0,85 & si & 2 \le x < 3 \\ 1 & si & 3 \le x \end{cases}$$

$$F(x) = \begin{cases} 0 & si & x < 0\\ 0,25 & si & 0 \le x < 1\\ 0,65 & si & 1 \le x < 2\\ 0,85 & si & 2 \le x < 3\\ 1 & si & 3 \le x \end{cases}$$

Thus we obtain the representation Cumulative Distribution Function, called a <u>cumulative chart</u>.

<u>Remark</u> : In the discrete case we have a staircase function.

Exercice: A running association has a women's team. The following list is made up of the first names of athletes followed in parentheses from the last 10 Km times..

Aicha(51), Ahlem(49), Amel(50), Badra(58), Bouchra(55), <u>Dalia(64)</u>, Fadia(60), Fahima(61), Fatiha(46), Fatima(56), Fouzia(50), Hajera(42), Houria(54), Ikram(48), Ilham(45), Imane(57), Jamila(59), Khadija(54), Lamia(54), Leila(46), Meriem(46), Nabila(41), Samia(39), <u>Samira(37)</u>, Wafaa(50), Yamina(47), Yasmine(50), Zahira(44), Zakia(51), Zoulikha(59).

The manager of the association decides to create in an order croissant five (05) teams (classes) of equivalent level such as : the 1st team contains 3 athletes, the 2nd team contains 3 athletes, The 3rd team contains 6 athletes, the 4th team contains 9 athletes, and the 5th team contains 9 athletes.

- 1. Form the teams. (Make a table giving the minimum and maximum times for each team).
- 2. Give a graphical representation of relative frequencies in the form of a histogram (the reference amplitude $a^* = 1000$).
- 3. Draw the relative frequency polygon.

Exercise solution:

1- Constitution of teams : The list of athletes is;

Aicha(51), Ahlem(49), Amel(50), Badra(58), Bouchra(55), <u>Dalia(64)</u>, Fadia(60), Fahima(61), Fatiha (46), Fatima(56), Fouzia(50), Hajera(42), Houria(54), Ikram(48), Ilham(45), Imane(57), Jamila(59), Khadija(54), Lamia(54), Leila(46), Meriem(46), Nabila(41), Samia(39), <u>Samira(37)</u>, Wafaa(50), Yamina(47), Yasmine(50), Zahira(44), Zakia(51), Zoulikha(59).

And we will arrange in ascending order of times : The 3 athletes with the shortest time (the best) will make up team 1;

Equipe 1	Equipe 2	Equipe 3	Equipe 4	Equipe 5
Samira (37)	Hajera (42)	<i>Leila</i> (46)	Amel (50)	Bouchra (55)
<i>Samia</i> (39)	Zahira (44)	Fatiha (46)	<i>Wafaa</i> (50)	Fatima (56)
Nabila (41)	<i>Ilham</i> (45)	Meriem (46)	Yasmine (50)	<i>lmane</i> (57)
		Yamina (47)	<i>Fouzia</i> (50)	<i>Badra</i> (58)
		<i>lkram</i> (48)	<i>Aicha</i> (51)	<i>Jamila</i> (59)
		<i>Ahlem</i> (49)	<i>Zakia</i> (51)	Zoulikha (59)
			Khadija (54)	Fadia (60)
			Houria (54)	<i>Fahima</i> (61)
			<i>Lamia</i> (54)	<i>Dalia</i> (64)

Continuation of the exercise solution :

We thus created "classes". We write them in the form of an inter for example the time interval of team 1 is : Coordinateur : Mr Medjati

form of a histogram (the reference amplitude $a^* = 1000$). We will calculate the different amplitudes :

Equipe de probabilité

$[b_{i-1}, b_i]$	n _i	$a_i = b_i - b_{i-1}$	$d_i = \frac{n_i}{a_i}$	$n_i^c = d_i \times a^*$	<i>f</i> _i (%)	f_i^c
[37, 42[3	5	0,6	600	0,10	20
[42,46]	3	4	0,75	750	0,10	25
[46, 50[6	4	1,5	1500	0,20	50
[50,55[9	5	1,8	1800	0,30	60
[55, 65[9	10	0,9	900	0,30	30
Total	30				1,00	

<mark>41</mark>

3- Draw the relative frequency polygon. **Definition of the relative frequency Polygon**:

It is *a broken line* connecting:

- 1- the midpoints of the vertices of the rectangles of the histogram.
- 2- Closure is done by two points on the abscissa axis located

respectively at half an interval of :

- The lower boundary of the first class
- and the upper bound of the last class. That's to say :

<u>Remarks</u> :

1- <u>*The frequency polygon*</u> is defined in the same way by associating it with a histogram of frequencies.

2- For the case of a discrete statistical variable <u>The frequency</u> <u>polygon (The relative frequency polygon</u> respectively) is drawn on the lines diagram of the frequencies (<u>The relative frequency</u> respectively) by connecting the vertices of the lines. Example :

2- Cumulative Distribution Function for the case of a continuous statistical variable :

In this case we will just give the technique for obtaining the curve of the distribution function which is called **<u>cumulative chart</u>**.

In effect:
$$F: \mathbb{R} \to [0, 1]$$

 $x \to F(x) = P(X \leq x)$

and its diagram (cumulative chart), is a broken line obtained by connecting

- The different coordinate points (b_i, F_i) in increasing order with $F_0 = 0$.
- And by joining the left side of the point (b_0, F_0) the $\frac{1}{2}$ line y = 0and on the right side of the point (b_r, F_r) the $\frac{1}{2}$ line y = 1.

<u>Example</u> :

We take the example from page 32.

Thus the curve of the distribution function, called <u>cumulative curve</u>, is drawn as follows:

Technique for calculating a value of F(x) for $x \in \mathbb{R}$:

To calculate F(x), $\forall x \in \mathbb{R}$ we will carry out <u>a linear interpolation</u> between the points $A(b_{i-1}; F(b_{i-1})) = (b_{i-1}; F_{i-1})$ et $B(b_i; F(b_i)) = (b_i; F_i)$ such as $x \in [b_{i-1}, b_i[$

The straight line equation (AB) is of the form y = mx + p such as : $m = \frac{y_B - y_A}{x_B - x_A} = \frac{y_C - y_A}{x_C - x_A} = \frac{F(b_i) - F(b_{i-1})}{b_i - b_{i-1}} = \frac{F_i - F_{i-1}}{b_i - b_{i-1}} = \frac{F(x) - F_{i-1}}{x - b_{i-1}}$ $\Rightarrow F(x) = F_{i-1} + m(x - b_{i-1}) = F_{i-1} + \frac{f_i}{b_i - b_{i-1}}(x - b_{i-1})$

<u>Remark</u> :

Otherwise we can calculate x if we have the value of F(x), by using <u>a linear interpolation</u> between points $A(b_{i-1}; F(b_{i-1})) = (b_{i-1}; F_{i-1})$ and $B(b_i; F(b_i)) = (b_i; F_i)$ such as $x \in [b_{i-1}, b_i[$ and $(F(x) \in [F_{i-1}, F_i[), Indeed :$

1.3- Measures of the statistical series

- 1.3.1- Measures of position:
- <u>**1- The Arithmetic Mean</u>** : Notée \overline{x} est égale ;</u>

 1^{st} – The case of an ungrouped statistical series; ie we have N observations : $x_1, x_2, ..., x_N$, then the mean is given byr :

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{i=1}^N x_i$$

Example 1: We consider the scores obtained in statistics by a group

of students : 14, 16, 12, 9, 11, 16, 7, 9, 7, 9.

The mean of these scores is :

$$\overline{x} = \frac{14 + 16 + 12 + 9 + 11 + 16 + 7 + 9 + 7 + 9}{10} = 11$$

2^{eme} – Case of a grouped statistical series; the mean : A- In the case of a discrete variable :

$$\overline{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_r x_r}{N} = \sum_{i=1}^{i=r} \frac{n_i x_i}{N} = \sum_{i=1}^{i=r} f_i x_i$$

B- In the case of a continuous variable :

$$\overline{x} = \frac{n_1 c_1 + n_2 c_2 + \dots + n_r c_r}{N} = \sum_{i=1}^{i=r} \frac{n_i c_i}{N} = \sum_{i=1}^{i=r} f_i c_i$$
With $c_i = \frac{b_{i-1} + b_i}{2}$, the Center of the class $[b_{i-1}, b_i[.$

Example 2 f_i Classes Centers c_i $n_i c_i$ n_i 0,15 **450** [20-40[15 30 0,20 [40-60] 20 1000 50 0,20 1600 [60-100[20 80 0,45 [100-200[45 6750 150 1,00 100 Total 9800

 $\Rightarrow \overline{x} = \sum_{i=1}^{i=r} \frac{n_i c_i}{N} = \frac{9800}{100} = 98 \Rightarrow \overline{x} \in [60 - 100[$

<u>**2- The Mode</u></u> :** is that value of the variable which occurs with the greatest frequency in a data set (or the greatest relative frequency). We note the mode M_o .</u>

A. Case of a discrete variable :

Example : We consider the scores obtained in statistics by a group of 20 students :

7, <u>13</u>, 5, 15, <u>12</u>, 9, 7, 8, 14, 16, <u>13</u>, 6, <u>13</u>, <u>10</u>, <u>13</u>, <u>12</u>, <u>10</u>, 7,<u>12</u>, <u>13</u>.

_	x_i	5	6	7	8	9	10	12	13	14	15	16
	n _i	1	1	3	1	1	2	3	5	1	1	1

The mode of this series is $M_o = 13$, value that appears <u>five times</u>.

The interpretation : The most common score is 13.

<u>**Remark</u>** : Graphically, in a lines chart the mode corresponds to <u>the</u> <u>abscissa of the highest lines</u>.</u>

B. <u>Case of a continuous variable</u> : In this case, we are rather talking about **The modal class.** We have two cases.

<u>**B.1- Cases of identical amplitudes**</u> :(ie $a_i = a_j \forall i \neq j$) The modal class is the class of the greatest frequency n_i , either $[b_{i-1}, b_i[$, with the Mode $M_o \in [b_{i-1}, b_i[$ then ;

$$M_{o} = b_{i-1} + a_{i} \left(\frac{m_{1}}{m_{1} + m_{2}}\right) With; \begin{cases} b_{i-1} : \text{ lower bound of modal class.} \\ b_{i} : \text{ upper bound of modal class.} \\ a_{i} : \text{ amplitude of the modal class.} \\ m_{1} = n_{i} - n_{i-1} \text{ et } m_{2} = n_{i} - n_{i+1}. \end{cases}$$

Example: Let the distribution of the population of 20 households according to the income (in hundreds of DA) of both parents;

Classes en HDA	Amp a_i	n _i	f_i
[200-300[100	40	0,20
[300-400[100	60	0,30
[400-500[100	30	0,15
[500-600[100	50	0,25
[600-700[100	20	0,10
Total		200	1,00

The modal class is [300 - 400[. The mode is calculated by :

$$M_{0} = b_{i-1} + a_{i} \left(\frac{m_{1}}{m_{1} + m_{2}} \right) = 300 + 100 \left(\frac{60 - 40}{(60 - 40) + (60 - 30)} \right)$$

 $\Rightarrow M_o = 340 HDA$

Interpretation : The most common salary is said to be 340 HDA.

<u>**B.2- Case of uneven amplitudes</u></u>: (ie a_i \neq a_j) The modal class is the class of the greatest corrected frequency n_i^c (or the highest corrected relative frequency f_i^c), and the mode M_o is such that:</u>**

$$M_{0} = b_{i-1} + a_{i} \left(\frac{m_{1}}{m_{1} + m_{2}}\right) With; \begin{cases} b_{i-1} : \text{ lower bound of modal class.} \\ b_{i} : \text{ upper bound of modal class.} \\ a_{i} : \text{ amplitude of the modal class.} \\ m_{1} = h_{i} - h_{i-1} = n_{i}^{c} - n_{i-1}^{c} \\ m_{2} = h_{i} - h_{i+1} = n_{i}^{c} - n_{i+1}^{c} \end{cases}$$

Where h_i , h_{i-1} and h_{i+1} are the corrected frequencies.

<u>**Remark 1**</u>: In both cases we can compute the mode M_o by using the relative frequencies instead of frequencies, by taking ; 1- $m_1 = f_i - f_{i-1}$ et $m_2 = f_i - f_{i+1}$ si $(a_i = a_i \forall i \neq j)$

2-
$$m_1 = f_i^c - f_{i-1}^c$$
 et $m_2 = f_i^c - f_{i+1}^c$ Si $(a_i \neq a_j)$

Example : Let the distribution of 100 individuals according to their age; $a^* = 100$

Classes	a _i	n _i	d_i	\boldsymbol{n}_{i}^{c}
[20 , 30[10	20	2,00	200
[30 , 40[10	25	2,50	250
[40 , 60[20	35	1,75	175
[60 , 80[20	20	1,00	100

The modale class is [30 - 40[, and the mode is :

$$M_{o} = b_{i-1} + a_{i} \left(\frac{m_{1}}{m_{1} + m_{2}} \right) = 30 + 10 \left(\frac{250 - 200}{(250 - 200) + (250 - 175)} \right)$$
$$\implies M_{o} = 34$$

Interpretation: The most common age is 34 years.

Calculation of Mode by Graphical Method of a continuous variable :

If ithe modale classe is $[b_{i-1}, b_i[$, with the Mode $M_o \in [b_{i-1}, b_i[$ then : $M_o = b_{i-1} + a_i \left(\frac{m_1}{m_1 + m_2}\right)$

And graphically the Mode $M_o \in [b_{i-1}, b_i]$ the Mode on a histogram is the point where the two segments intersect $[(b_{i-1}, h_i); (b_i, h_{i+1})]$ and $[(b_{i-1}, h_i, h_i); (b_i, h_i)]$, see following figure :

<u>**3- The Median</u> :** For a statistical series arranged in ascending order the median *Me* is the value of the variable which divides the population into two groups of equal frequencies.</u>

A. <u>Case of a discrete variable</u> : For a statistical series arranged in ascending order , that's to say :

 $v_1 \le v_2 \le \dots \le v_N$ the median *Me* is the value of the middle which will depend on the total frequency *N*.

1- If N is odd (N = 2k+1), then $Me = v_{k+1}$.

2- If *N* is even (*N* = 2*k*), then $Me = \frac{v_k + v_{k+1}}{2}$.

Example 1: Let the distribution of 9 households according to the number of children ;

x_i	0	1	2	3	4
n _i	2	2	1	3	1

x_i	0	1	2	3	4
n_i	2	2	1	3	1

·		4 observation			v_5	4	4 observation			
	(ascending order) of individuals	1	2	3	4	5	6	7	8	9
_	Number of children per household $ {m v}_{i} $	0	0	1	1	2	3	3	3	4

We have $N = 9 = 2 \times 4 + 1 \implies Me = v_{k+1} = v_5 = 2$.

Example 2: Let the distribution of 10 households according to the

number of children ;	x _i	0	1	2	3	4
	n _i	2	2	1	3	2

-		4 c	bser	rvati	on		l	5 4	b se	rvati	on
	(ascending order) of individuals	1	2	3	4	5	6	7	8	9	10
_	Number of children per household $ {m v}_{i} $	0	0	1	1	2	3	3	3	4	4

We have $N = 10 = 2 \times 5$ (even) $\Rightarrow Me = \frac{v_k + v_{k+1}}{2} = \frac{2+3}{2} = 2,5.$

- B. <u>Case of a continuous variable</u>: We follow the following steps;
 1- Determining <u>the median classe</u> [b_{i-1}, b_i[, By looking for the class that contains the individual of order k+1 (resp k) if N = 2k+1 (resp N = 2k).
- 2- By *Linear interpolation*, we can calculate the median inside the median class which is given by :

$$Me = b_{i-1} + a_i \left(\frac{\frac{N}{2} - N_{i-1}}{N_i - N_{i-1}} \right) With; \quad With; \quad With; \quad N_i: increasing \ cumulative \ frequency \ of \ the \ median \ class, \ N_{i-1}: increasing \ cumulative \ frequency \ of \ the \ class \ before \ the \ median \ class \ N: \ the \ total \ frequency.$$

<u>Remark</u> :

We can determine the median in the same way using increasing cumulative frequencies.

And we will have the formula :

$$M\acute{e} = b_{i-1} + a_i \left(\frac{0, 5 - F_{i-1}}{F_i - F_{i-1}} \right)$$
 With;

 $m{F}_i$: increasing cumulative relative frequency of the median class, $m{F}_{i\text{-}1}$: increasing cumulative relative frequency of the class before the median class .

Example 3: We take the example from page 32.

$[b_{i-1}, b_i]$	n _i	N _i	f_i	F _i
[5, 10[11	11	0,11	0,11
[10, 15[10	21	0,10	0,21
[15, 20[15	36	0,15	5 0,36
[20, 30[20	56	0,20	0,56
[30, 40[18	74	0,18	0,74
[40,60[16	90	0,16	0,90
[60, 80[10	100	0,10	1,00

We have
$$\frac{N}{2} = 50 \Rightarrow$$
 the median classe is [20, 30[and et we will have :
 $Me = b_{i-1} + a_i \left(\frac{\frac{N}{2} - N_{i-1}}{N_i - N_{i-1}} \right)$
 $\Rightarrow Me = 20 + 10 \left(\frac{50 - 36}{56 - 36} \right) = 20 + 10 \left(\frac{14}{20} \right) \Rightarrow Me = 27$ years

<u>**Remarque</u></u> : The median can be defined as the inverse of the cumulative distribution function for the value x = 0,5; Me = F^{-1}(0,5).</u>**

We say that of the median On dit que <u>the order</u> of the median is $p = F(M\acute{e}) = 0,5$. And we can calculate the median graphically from the cumulative curve.

Example: Using our example of the distribution of 100individuals according to their age.

$[b_{i-1}, b_i]$	n _i	N_i	f_i	F _i
[5 , <i>10</i> [11	11	0,11	0,11
[10, 15[10	21	0,10	0,21
[<i>15</i> , 20[15	36	0,15	0,36
[20, 30[20	56	0,20	0,56
[30, 40[18	74	0,18	0,74
[40, 60[16	90	0,16	0,90
[60, 80[10	100	0,10	1,00

- the median classe is [20, 30[and the median Me is the abscissa of order $F(Me) = 0.5 (Me = F^{-1}(0.5))$

So the equation of the straight line (AB) is of the form y = mx + p such as :

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{F_i - F_{i-1}}{b_i - b_{i-1}} = \frac{F(Me) - F_{i-1}}{Me - b_{i-1}}$$
$$\Rightarrow Me = b_{i-1} + a_i \left(\frac{F(Me) - F_{i-1}}{F_i - F_{i-1}}\right) = 20 + 10 \left(\frac{0,50 - 0,36}{0,56 - 0,36}\right)$$

 $\Rightarrow Me = 27$ years

- <u>**3- The Quartiles:**</u> The Quartiles Q_1 , Q_2 , Q_3 are measures that divide the frequency distribution in to four equal parts :
- **25** % the values $\leq Q_1$, **25** % between Q_1 and Q_2 ; **25** % between Q_2 and Q_3 , and **25** % greater than Q_3 .
- <u>**Remark**</u>: Q_1 , Q_2 , Q_3 are respectively the abscissa of the ordinate points 0,25 ; 0,5 ; 0,75 on the increasing cumulative curve. Q_2 is equal to the median.
- That's to say :
- The order of Q_1 is $p = F(Q_1) = 0,25$.
- The order of Q_2 is $p = F(Q_2) = F(Me) = 0,50$.
- The order of Q_3 is $p = F(Q_3) = 0,75$.

- 4 Calculation of Quartiles :
- <u>**4.1**</u> **Discreet case** : We have p the order of quartile Q_i , with i = 1, 2, 3 then :
- If $(N \times p)$ is an integer number, then $Q_i = \frac{v_{(N \times p)} + v_{(N \times p)+1}}{2}$. - If $(N \times p)$ is not an integer number, then $Q_i = v_{[N \times p]}$ where $[N \times p]$ represents the smallest integer number greater than or equal to $N \times p$ (which is called integer part with excess integer part with excess).

Example 1: Let the distribution of 12 households according to the

number of children ;

x_i	0	1	2	3	4
n _i	2	2	1	5	2

- The first quartile Q_1 : As $(N \times p) = 12 \times 0,25 = 3$ is an integer number, we have :

$$Q_1 = \frac{v_{(N \times p)} + v_{(N \times p) + 1}}{2} = \frac{v_3 + v_4}{2} = \frac{1 + 1}{2} \implies Q_1 = 1$$

- The Second Quartile $Me = Q_2$: As $(N \times p) = 12 \times 0,50 = 6$ is an integer number, we have :

$$Q_2 = Me = \frac{v_{(N \times p)} + v_{(N \times p) + 1}}{2} = \frac{v_6 + v_7}{2} = \frac{3 + 3}{2} \implies Q_2 = 3$$

- The third quartile Q_3 : As $(N \times p) = 12 \times 0,75 = 9$ is an integer number, we have :

$$\dot{Q}_3 = \frac{v_{(N \times p)} + v_{(N \times p) + 1}}{2} = \frac{v_9 + v_{10}}{2} = \frac{3 + 3}{2} \implies Q_3 = 3$$

Example 2: Let the distribution of 9 households according to the number of children x_i **0 1 2 3 4**

x _i	0	1	2	3	4	
n _i	2	2	1	2	2	

- The first quartile Q_1 : As $(N \times p) = 9 \times 0,25 = 2,25$ is not an integer number, we have : $Q_1 = v_{\lceil 2,25 \rceil} = v_3 = 1$.
- The Second Quartile $Me = Q_2$: As $(N \times p) = 9 \times 0,50 = 4,50$ is not an integer number, we have : $Q_2 = v_{\lceil 4,50 \rceil} = v_5 = 2$
- The third quartile Q_3 : As $(N \times p) = 9 \times 0,75 = 6,75$ is not an integer number, we have : $Q_3 = v_{[6,75]} = v_7 = 3$.

4.2 - The continue case :

For the calculation of Q_1 , Q_2 , Q_3 : We follow the following steps;

- 1- <u>Determination the class</u> $[b_{i-1}, b_i]$ of $Q_1 \in [b_{i-1}, b_i]$, By searching for the class that contains the order individual $[N \times p] = [N/4]$.
- 2- If N_i : increasing cumulative frequency of the class of \mathcal{Q}_1 ,
 - N_{i-1} : increasing cumulative frequency of the class before the class of Q_1 and N: the total frequency.
 - F_i : increasing relative cumulative frequency of the class of Q_1 , F_{i-1} : increasing cumulative frequency of the class before

the class of Q_1 . the we have :

$$Q_{1} = b_{i-1} + a_{i} \left(\frac{N/4 - N_{i-1}}{N_{i} - N_{i-1}} \right) = b_{i-1} + a_{i} \left(\frac{0,25 - F_{i-1}}{F_{i} - F_{i-1}} \right)$$

<u>**Nb**</u>: The calculation of Q_2 et Q_3 is done in the same way such that;

$$Q_{2} = M\acute{e} = b_{i-1} + a_{i} \left(\frac{N/2 - N_{i-1}}{N_{i} - N_{i-1}} \right) = b_{i-1} + a_{i} \left(\frac{0.5 - F_{i-1}}{F_{i} - F_{i-1}} \right)$$
$$Q_{3} = b_{i-1} + a_{i} \left(\frac{N(3/4) - N_{i-1}}{N_{i} - N_{i-1}} \right) = b_{i-1} + a_{i} \left(\frac{0.75 - F_{i-1}}{F_{i} - F_{i-1}} \right)$$

1.3.2- Measures of Dispersion :

<u>**Remark 1**</u> : The quartiles already seen as measures of position can be considered as measures of dispersion.

<u>**1-**</u> The range noted E (or R) is simply the difference between the largest and smallest observed value.

$$E = x_{\max} - x_{\min}$$

<u>2- The interquartile range</u>: This is the difference between the first and last quartiles. That's to say;

$$IQ = Q_3 - Q_1$$

<u>**Remark 2</u>** : The interquartile range measures the range of the middle 50% of values in a classified data series.</u>

Example: We take the distribution of the 100 individuals according

to their ages.

$[b_{i-1}, b_i]$	n _i	N_i	f_i	F_{i}
[5 , <i>10</i> [11	11	0,11	0,11
[10,15[10	21	0,10	0,21
[<i>15, 20</i> [15	36	0,15	, 0,36
[20, 30[20	56	0,20	0,56
[30, 40[18	74	0,18	0,74
[40,60[16	90	0,16	0,90
[60, 80[10	100	0,10	1,00

Let's calculate the quartiles Q_1 , Q_3 and the interquartile range. On a :

$$\left[\frac{N}{4}\right] = 25, \left[\frac{3N}{4}\right] = 75, \text{ so the class of } Q_1 \text{ is } [15, 20[, \text{ that of } Q_3 \text{ is } [40, 60[]] \\ \Rightarrow Q_1 = b_{i-1} + a_i \left(\frac{0,25 - F_{i-1}}{F_i - F_{i-1}}\right) \Rightarrow Q_1 = 15 + 5 \left(\frac{0,25 - 0,21}{0,36 - 0,21}\right) = 16,33 \text{ years}$$

- Which means that 25% of individuals are under the age of 16 years and 4 months. ($0,33\times12=3,96\approx4$). And for Q_3 we have :

- For Q_3 we have :

$$Q_3 = b_{i-1} + a_i \left(\frac{0,75 - F_{i-1}}{F_i - F_{i-1}}\right) \Longrightarrow Q_3 = 40 + 20 \left(\frac{0,75 - 0,74}{0,90 - 0,74}\right) = 41,25 \text{ years}$$

- Which means that 75% of individuals are under the age of 41 years and 3 months $(0,25\times12=3)$. So the interquartile range is:

$\Rightarrow IQ = Q_3 - Q_1 = 24,92$ years

- Which means the age difference between Q1 and Q3 is 24 years, 11 months and 12 days ($0.92 \times 12 = 11.04$ and $0.4 \times 30 = 12$).

<u>Remark 3</u> :

If $N \times p = N_i$, then the quartiles $x_p = b_i$ although $b_i \notin [b_{i-1}, b_i[$ and the class of the quartile is $[b_{i-1}, b_i[$.

Example: We take the distribution of the 100 individuals according to their ages.

Classes	n _i	N _i	f_i	F_i
[20 , 30[25	25	0,25	0,25
[30 , 40[20	45	0,20	0,45
[40 , 60[35	80	0,35	0,80
[60 , 80[20	100	1,00	1,00

1- Calculation of $\mathbf{1}^{st}$ quartile Q_1 :

We have the order of 1^{st} quartile Q_1 is p = 0,25. As $\lceil N \times p \rceil = \lceil 100 \times 0,25 \rceil = \lceil 25 \rceil = 25$, and $N_1 = 25$, then :

The class of Q_1 is [20, 30[, that's to say $Q_1 \in [20, 30]$. Therefore :

$$Q_1 = b_0 + a_1 \left(\frac{N(1/4) - N_0}{N_1 - N_0} \right) = 20 + 10 \left(\frac{25 - 0}{25 - 0} \right) = 30 \in [20, 30]$$

<u>Remark 4</u> :

Approximate quartile values can be obtained graphically from **the cumulative curve.**

<u>**3-**</u> The Variance : The variance of a variable X noted V(x) is the sum of the squares of the deviations from the mean divided by the number of observations (Total frequency N).

A- In the case of a discrete variable :

$$V(x) = \frac{1}{N} \sum_{i=1}^{i=r} n_i (x_i - \bar{x})^2 = \sum_{i=1}^{i=r} f_i (x_i - \bar{x})^2$$

B- In the case of a continuous variable :

$$V(x) = \frac{1}{N} \sum_{i=1}^{i=r} n_i (c_i - \bar{x})^2 = \sum_{i=1}^{i=r} f_i (c_i - \bar{x})^2$$

With $c_i = \frac{b_{i-1} + b_i}{2}$, le <u>centre</u> de la classe $[b_{i-1}, b_i]$.

<u>**Remark 5</u>** : The variance can be written in another form called a « developed formula » :</u>

- The developed formula for the variance is

1st – Case of a non-grouped statistical series; i.e. we have N observations: $V(r) = \left(\frac{1}{2}\sum_{r=1}^{i=r}r^{2}\right) - \overline{r}^{2}$

$$V(x) = \left(\frac{1}{N}\sum_{i=1}^{N}x_i^2\right) - \overline{x}^2$$

A- In the case of a discrete variable :

$$V(x) = \left(\frac{1}{N} \sum_{i=1}^{i=r} n_i x_i^2\right) - \overline{x}^2 = \left(\sum_{i=1}^{i=r} f_i x_i^2\right) - \overline{x}^2 \cdots \cdots (*)$$

B- In the case of a continuous variable :

$$V(x) = \left(\frac{1}{N} \sum_{i=1}^{i=r} n_i c_i^2\right) - \overline{x}^2 = \left(\sum_{i=1}^{i=r} f_i c_i^2\right) - \overline{x}^2$$

Proof of the developed formula : We have;

$$V(x) = \frac{1}{N} \sum_{i=1}^{i=r} n_i (x_i - \overline{x})^2 = \frac{1}{N} \sum_{i=1}^{i=r} n_i (x_i^2 - 2x_i \overline{x} + \overline{x}^2)$$

$$\Rightarrow V(x) = \frac{1}{N} \sum_{i=1}^{i=r} n_i x_i^2 - 2\frac{\overline{x}}{N} \sum_{i=1}^{i=r} n_i x_i + \frac{\overline{x}^2}{N} \sum_{i=1}^{i=r} n_i$$

(76)

$$\Rightarrow V(x) = \left(\frac{1}{N} \sum_{i=1}^{i=r} n_i x_i^2\right) - 2\overline{x} \cdot \overline{x} + \overline{x}^2 \quad \Rightarrow \quad (*)$$

<u>**Remark 5</u>** : This developed formula for variance is easier to remember and faster to calculate.</u>

<u>**Remark 6</u>** : The variance is expressed in the square of the unit of the variable. For example, the variance of the age variable is expressed in «squared years (years²)» because;</u>

$$V(x) = \left(\frac{1}{N} \sum_{i=1}^{i=r} n_i x_i^2\right) - \bar{x}^2$$

- **4- The standard deviation**: We call standard deviation which we denote by $\sigma(x)$, the square root of the variance: $\sigma(x) = \sqrt{V(x)}$ **Remark 7**:
- *i)* The standard deviation is expressed in the same unit of measurement as the variable.
- It is used as an indicator of the dispersion of the statistical II) series, so that in an increasing order the mean \overline{x} divides the population into two parts such that the individuals having the value of the variable less than \overline{x} will have approximately, $\overline{x} - \sigma(x)$ the others $(X > \overline{x})$ will have $\overline{x} + \sigma(x)$. iii) More the larger the standard deviation, the dispersion of bservations around the mean of the variable is strong. iv) A distribution will have a standard deviation near 0 if these
- values are collected around the mean.

Exemple 1: Consider the following statistics scores of a group of 20

students:

x _i	n_i	$n_{i} x_{i}$	$n_{i}x_{i}^{2}$
2	2	4	8
3	2	6	18
7	4	28	196
8	2	16	128
12	3	36	432
17	2	34	578
18	5	90	1620
Total	20	214	2980

Then: $\bar{x} = \sum_{i=1}^{i=r} \frac{n_i x_i}{N} = \frac{214}{20} = 10,7 \text{ and } V(x) = \left(\frac{1}{N} \sum_{i=1}^{i=r} n_i x_i^2\right) - \bar{x}^2$ $\Rightarrow V(x) = \frac{2980}{20} - (10,7)^2 \Rightarrow V(x) = 149 - 114,49 = 34,51 \Rightarrow \sigma(x) = 5,87$

So, some students (the good ones) will have approximately the mean score (10,7) plus (+) 5,87 (=16,57) the others (the bad ones) will have the mean score (10,7) less (-) 5,87 (= 4,83).