

Séries de Fourier

- 0.1 Séries triogonométriques
- 0.2 Série de Fourier
- 0.3 Développement en série de Fourier
- 0.4 Égalité de Parseval

0.1 Séries triogonométriques

Définition 0.1.1 On appelle série trigonométrique une série de fonctions dont le terme général est de la forme

$$f_n(x) = a_n \cos(nx) + b_n \sin(nx)$$

avec $x \in \mathbb{R}$, $\forall n \in \mathbb{N}$, $a_n \in \mathbb{R}$ et $b_n \in \mathbb{R}$.

Proposition 0.1.1 Si $\sum a_n$ et $\sum b_n$ convergent absolument, alors la série $\sum a_n \cos(nx) + b_n \sin(nx)$ converge normalement sur \mathbb{R} .

■ Exemples 0.1

$$\sum \frac{\cos(nx)}{n^2}; \quad \sum a^n \sin(nx) \ (|a| < 1); \quad \sum \frac{\cos(nx)}{n!}$$

sont normalement convergentes sur \mathbb{R} .

Proposition 0.1.2 Si les suites (a_n) et (b_n) sont décroissantes et tendent vers 0, alors la série $\sum a_n \cos(nx) + b_n \sin(nx)$ est convergente sur $\mathbb{R} - 2\pi\mathbb{Z} = \{x \in \mathbb{R}; \ \forall k \in \mathbb{Z}, \ x \neq 2k\pi\}$. De plus cette série converge uniformément sur $[2k\pi + \alpha, 2(k+1)\pi - \alpha] \ (\forall k \in \mathbb{Z}, \ \forall \alpha \in]0, \pi[)$. Sa somme est donc continue sur $\mathbb{R} - 2\pi\mathbb{Z}$.

Preuve. On applique le régle d'Abel uniforme.

Définition 0.1.2 (écriture complexe)

Toute série trigonométrique $\sum a_n \cos(nx) + b_n \sin(nx)$ peut s'écrire sous la forme $\sum_{n \in \mathbb{Z}} c_n e^{inx}$ avec $c_0 = a_0$, $c_n = \frac{1}{2} (a_n - ib_n)$ $c_{-n} = \frac{1}{2} (a_n + ib_n)$, $\forall n \in \mathbb{N}^*$.

Preuve. Il suffit de remarquer que : $\cos(nx) = \frac{1}{2} \left(e^{inx} + e^{-inx} \right); \quad \sin(nx) = \frac{1}{2i} \left(e^{inx} - e^{-inx} \right)$

Lemme 0.1.3 On a

$$\int_{0}^{2\pi} \cos(nx) \sin(px) dx = 0 \qquad \forall n, p \in \mathbb{N},$$

$$\int_{0}^{2\pi} \cos(nx) \cos(px) dx = 0 \qquad \forall n, p \in \mathbb{N}, \ n \neq p,$$

$$\int_{0}^{2\pi} \sin(nx) \sin(px) dx = 0 \qquad \forall n, p \in \mathbb{N}, \ n \neq p,$$

$$\int_{0}^{2\pi} \cos^{2}(nx) dx = \pi = \int_{0}^{2\pi} \sin^{2}(nx) dx \qquad \forall n, p \in \mathbb{N}^{*}.$$

Proposition 0.1.4 (évaluation des coefficients)

Soit $\sum a_n \cos(nx) + b_n \sin(nx)$ une série trigonométrique uniformément convergente sur $[0, 2\pi]$. Notons $S(x) = \sum_{n=0}^{+\infty} a_n \cos(nx) + b_n \sin(nx)$, $x \in \mathbb{R}$. Alors

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} S(x) dx,$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} S(x) \cos(nx) dx, \quad \forall n \in \mathbb{N}^*,$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} S(x) \sin(nx) dx, \quad \forall n \in \mathbb{N}^*.$$

Preuve. En utilisant la convergence uniforme et le lemme0.1.3,on obtient

$$\int_0^{2\pi} S(x) \cos(nx) dx = \sum_{p=0}^{+\infty} a_p \int_0^{2\pi} \cos(nx) \cos(px) dx + b_p \int_0^{2\pi} \cos(nx) \sin(px) dx$$
$$= \pi a_n.$$

On démontre de la même manière les autres formules.

Comme $\sin(0x) = 0$, on peut choisir $b_0 = 0$.

Proposition 0.1.5 (série trigo-complexe)

Soit $\sum_{n\in\mathbb{Z}} c_n e^{inx}$ une série trigonométrique écrite sous forme complexe qui converge uniformément sur $[0,2\pi]$. Notons $S(x)=\sum_{n=-\infty}^{+\infty}c_ne^{inx},\ x\in\mathbb{R}$. Alors

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} S(x) e^{-inx} dx, \quad \forall n \in \mathbb{Z}.$$

A cause de la 2π -périodicité de S(x) on a

$$c_n = \frac{1}{2\pi} \int_{\alpha}^{2\pi + \alpha} S(x) e^{-inx} dx, \quad \forall n \in \mathbb{Z}, \ \forall \alpha \in \mathbb{R}.$$

La même remarque est valable pour a_n et b_n .

0.2 Série de Fourier 7

0.2 Série de Fourier

Définition 0.2.1 Soit f une fonction 2π -périodique. Sa série de Fourier est la série trigonométrique $\sum a_n \cos(nx) + b_n \sin(nx)$ définie par

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx, \quad \forall n \in \mathbb{N}^*$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx, \quad \forall n \in \mathbb{N}^*$$

$$(1)$$

Proposition 0.2.1 (Parité)

Comme f est 2π -périodique, on peut changer l'intervalle d'intégration en $[-\pi, \pi]$. On déduit que 1. Si f est paire on a pour tout $n \in \mathbb{N}^*$

$$b_n = 0$$

$$a_0 = \frac{1}{\pi} \int_0^{\pi} f(x) dx,$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx,$$

2. Si f est impaire on a pour tout $n \in \mathbb{N}$

$$a_n = 0 \quad \forall n \in \mathbb{N}$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx,$$

0.3 Développement en série de Fourier

Étant donnée une fonction f 2π -périodique dont les coefficients de Fourier sont définis par (1), deux questions se posent :

- 1. La série de Fourier de f converge-t-elle?
- 2. Si oui, converge -t-elle vers *f* ?

Theorem 0.3.1 — Dirichlet. Soit f une fonction $f \ 2\pi$ —périodique, continue par morceaux sur $[0,2\pi]$. On suppose que f admet en tout point de $x \in [0,2\pi]$ une limite à droite notée f(x+0) et une limite à gauche notée f(x-0). Enfin on suppose que f admet en tout point de f0,2 π 1 une dérivée à droite et une dérivée à gauche. Alors pour tout f1 a série de Fourier de f2 est convergente en f3 et a pour somme

$$S_f(x) = \frac{1}{2} (f(x+0) + f(x-0)).$$

En particulier $S_f(x) = f(x)$ si f est continue en x.

Exemple 0.1 On considère la fonction 2π -périodique définie par

$$f(x) = \begin{cases} \frac{x}{2} & \text{si } x \in]-\pi, \pi[, \\ 0 & \text{si } x = \pm \pi. \end{cases}$$

On remarque que f et impaire, alors $a_n = 0, \forall n \in \mathbb{N}$.

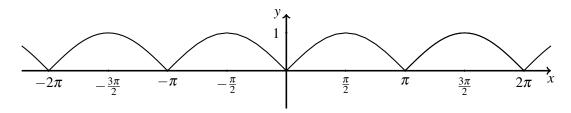
$$b_n = \frac{2}{\pi} \int_0^{\pi} \frac{x}{2} \sin(nx) dx = \frac{(-1)^{n-1}}{n}, \quad \forall n \in \mathbb{N}^*.$$

D'après le théorème de Dirichlet, on a

$$\frac{x}{2} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} \sin(nx) \quad \forall x \in]-\pi,\pi[.$$

Si $x=\pi$ $f(\pi+0)=-\frac{\pi}{2};$ $f(\pi-0)=\frac{\pi}{2}$ donc $S(\pi)=0.$ De même $S(-\pi)=0.$

Exemple 0.2 $g(x) = |\sin x|, \quad x \in \mathbb{R}$



On remarque que f et paire, alors $b_n = 0$, $\forall n \in \mathbb{N}$. Pour tout $n \ge 2$, on a

$$a_n = \frac{2}{\pi} \int_0^{\pi} \sin x \cos(nx) dx,$$

$$= \frac{1}{\pi} \int_0^{\pi} (\sin(n+1)x - \sin(n-1)x) dx$$

$$= \frac{1}{\pi} \left(\frac{1}{n+1} (1 - \cos(n+1)\pi) - \frac{1}{n-1} (1 - \cos(n-1)\pi) \right)$$

$$= \frac{(1 + (-1)^n)}{\pi} \left(\frac{1}{n+1} - \frac{1}{n-1} \right)$$

On déduit que $a_{2q+1} = 0$, $a_{2q} = \frac{4}{\pi(1-4q^2)} \quad \forall q \in \mathbb{N}^*$.

Reste à calculer a_0 et a_1 .

$$a_0 = \frac{1}{\pi} \int_0^{\pi} \sin x dx = \frac{2}{\pi}$$
 $a_1 = \frac{2}{\pi} \int_0^{\pi} \sin x \cos x dx = 0.$

 $a_0 = \frac{1}{\pi} \int_0^\pi \sin x dx = \frac{2}{\pi} \qquad a_1 = \frac{2}{\pi} \int_0^\pi \sin x \cos x dx = 0.$ La série de Fourier de g est : $S_g(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{q=1}^{+\infty} \frac{1}{1-4q^2} \cos(2qx) \quad (x \in \mathbb{R}).$ Comme g est continue sur \mathbb{R} , le théorème de Dirichlet entraine que

$$|\sin x| = \frac{2}{\pi} - \frac{4}{\pi} \sum_{q=1}^{+\infty} \frac{1}{1 - 4q^2} \cos(2qx) \quad \forall x \in \mathbb{R}.$$

Si
$$x = 0$$
, on déduit que $\sum_{q=1}^{+\infty} \frac{1}{4q^2-1} = \frac{1}{2}$.

0.4 Égalité de Parseval

Theorem 0.4.1 — Parseval. Soit f une fonction 2π —périodique, continue par morceaux telle que l'intégrale $\int_0^{2\pi} |f(x)|^2 dx$ est fini. Alors les séries numériques $\sum |a_n|^2$ et $\sum |b_n|^2$ sont convergentes et on a

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx = |a_0|^2 + \frac{1}{2} \sum_{n=1}^{+\infty} |a_n|^2 + |b_n|^2.$$

R En écriture complexe, on a

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx = |c_0|^2 + 2 \sum_{n=1}^{+\infty} |c_n|^2.$$

En effet nous avons $|c_n|^2 = c_n \overline{c_n} = c_n c_{-n} = |c_{-n}|^2 \quad \forall n \in \mathbb{N}^*.$

■ Exemple 0.3

$$f(x) = \begin{cases} \frac{x}{2} & \text{si } x \in]-\pi, \pi[, \\ 0 & \text{si } x = \pm \pi. \end{cases}$$

D'après l'exemple0.1, on a

$$\frac{x}{2} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} \sin(nx), \quad \forall x \in]-\pi, \pi[.$$

En appliquant l'égalité de Parseval, on obtient

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{1}{\pi} \int_0^{2\pi} \frac{x^2}{4} dx = \frac{\pi^2}{6}.$$